External zonotopal algebra

نویسندگان

  • Nan Li
  • Amos Ron
چکیده

We provide a general, unified, framework for external zonotopal algebra. The approach is critically based on employing simultaneously the two dual algebraic constructs and invokes the underlying matroidal and geometric structures in an essential way. This general theory makes zonotopal algebra an applicable tool for a larger class of polytopes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Zonotopal Spaces

Zonotopal algebra interweaves algebraic, geometric and combinatorial properties of a given linear map X. Of basic significance in this theory is the fact that the algebraic structures are derived from the geometry (via a nonlinear procedure known as “the least map”), and that the statistics of the algebraic structures (e.g., the Hilbert series of various polynomial ideals) are combinatorial, i....

متن کامل

Hierarchical zonotopal power ideals

Zonotopal algebra deals with ideals and vector spaces of polynomials that are related to several combinatorial and geometric structures defined by a finite sequence of vectors. Given such a sequence X , an integer k ≥ −1 and an upper set in the lattice of flats of the matroid defined by X , we define and study the associated hierarchical zonotopal power ideal. This ideal is generated by powers ...

متن کامل

Zonotopal algebra

A wealth of geometric and combinatorial properties of a given linear endomorphism X of IR is captured in the study of its associated zonotope Z(X), and, by duality, its associated hyperplane arrangement H(X). This well-known line of study is particularly interesting in case n := rankX ≪ N . We enhance this study to an algebraic level, and associate X with three algebraic structures, referred he...

متن کامل

Zonotopal Subdivisions of Cyclic Zonotopes

The cyclic zonotope …n; d† is the zonotope in R d generated by any n distinct vectors of the form …1; t; t 2 ;. .. ; t dÀ1 †. It is proved that the re¢nement poset of all proper zonotopal subdivisions of …n; d† which are induced by the canonical projection p: …n; d H † 3 …n; d†, in the sense of Billera and Sturmfels, is homotopy equivalent to a sphere and that any zonotopal subdivision of ...

متن کامل

Zonotopal Tilings and the Bohne-dress Theorem

We prove a natural bijection between the polytopal tilings of a zonotope Z by zonotopes, and the one-element-liftings of the oriented matroid M(Z) associated with Z. This yields a simple proof and a strengthening of the Bohne-Dress Theorem on zonotopal tilings. Furthermore we prove that not every oriented matroid can be represented by a zonotopal tiling.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011